Preface

Thank you for choosing DELTA's high-performance VFD-F Series. The VFD-F Series is manufactured with high-quality components and materials and incorporates the latest microprocessor technology available.
[al Getting Started
This quick start will be helpful in the installation and parameter setting of the AC motor drives. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drives. For detail information, refer to the VFD-F User Manual on the CD supplied with the drive.

DANGER!

1. AC input power must be disconnected before any wiring to the AC motor drive is made.
2. A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
3. Never reassemble internal components or wiring.
4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
5. Ground the VFD-F using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
6. VFD-F series is used only to control variable speed of 3-phase induction motors, NOT for 1phase motors or other purpose.
7. VFD-F series shall NOT be used for life support equipment or any life safety situation.

WARNING!

1. DO NOT use Hi-pot test for internal components. The semi-conductor used in AC motor drive easily damage by high-pressure.
2. There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
3. Only quality person is allowed to install, wire and maintain AC motor drive.

CAUTION!

1. Some parameters settings can cause the motor to run immediately after applying power.
2. DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
3. Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
4. To prevent personal injury, please keep children and unqualified people away from the equipment.
5. When the motor cable between AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
6. The rated voltage for AC motor drive must be $\leq 240 \mathrm{~V}$ ($\leq 480 \mathrm{~V}$ for 460 V models) and the mains supply current capacity must be ≤ 5000 A RMS (≤ 10000 A RMS for the $\geq 40 \mathrm{hp}$ (30kW) models).

Specifications

Voltage Class					230V Class																	
Model Number VFD-XXXF23X					007	015		022		037	055		075		110	150		185	220	300	370	
Max. Applicable Motor Output (kW)					0.75		1.5	2.2		3.7		5.5	7.5		11	15		18.5	22	30		37
Max. Applicable Motor Output (HP)					1.0		2.0	3.0		5.0		7.5	10		15	20		25	30	40		50
	Rated Output Capacity (kVA)				1.9		2.5	4.2		6.5		9.5	12.5		18.3	24.7		28.6	34.3	45.7		55
	Rated Output Current (A)				5.0			11		17	25		33		49	65		75	90	120		145
	Maximum Output Voltage (V)				Proportional to Input Voltage																	
	Rated Frequency (Hz)				0.10-120.00Hz																	
	Carrier Frequency (kHz)				4-10										3-9					2-6		
	Rated Input Current (A)				5.7		7.6	15.5		20.6	26		34		50	60	75		90	110	142	
	Rated Voltage				3-phase 180-264 V																	
	Frequency Tolerance				$47-63 \mathrm{~Hz}$																	
Voltage Class					460 V Class																	
Model Number VFD-XXXF43X		007	015	022	037	055	075	110	150	185	220	300	370	450	550	750	900	1100	1320	1600	1850	2200
Max. Applicable Motor Output (kW)		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220
Max. Applicable Motor Output (hp)		1.0	2.0	3.0	5.0	7.5	10	15	20	25	30	40	50	60	75	100	125	150	175	215	250	300
	Rated Output Capacity (kVA)	2.3	3.2	4.2	6.5	10	14	18	25	29	34	46	56	69	84	114	137	168	198	236	281	350
	Rated Output Current (A)	2.7	4.2	5.5	8.5	13	18	24	32	38	45	60	73	91	110	150	180	220	260	310	370	460
	Maximum Output Voltage (V)	3-phase Proportional to Input Voltage																				
	Output Frequency (Hz)	$0.10-120.00 \mathrm{~Hz}$																				
	Carrier Frequency (kHz)	4-10						3-9				2-6										
	Rated Input	3-phase																				
	Current (A)	3.2	4.3	5.9	11.2	14	19	25	32	39	49	60	73	91	120	160	160	200	240	300	380	400
	Rated Voltage	3-phase 342-528 V																				
	Voltage Tolerance	-15~+10\% (342-528 V)																				
	Frequency Tolerance	$\pm 5 \%(47 \sim 63 \mathrm{~Hz})$																				

General Specification			
	Control System		SPWM (Sinusoidal Pulse Width Modulation, carrier frequency 2-10kHz)
	Output Frequency Resolution		0.01 Hz
	Torque Characteristics		Including the auto-torque, auto-slip compensation; starting torque can be 150% at 1.0 Hz
	Overload Endurance		120\% of rated current for 1 minute
	Accel/Decel Time		6000/0.1-3600.0/0.01-360.00 seconds (3 Independent settings for Accel/Decel Time)
	V/f Pattern		Adjustable V/f pattern
	Stall Prevention Level		20 to 150%, Setting of Rated Current
	Frequency Setting	Keypad	Setting by -
		External Signal	1 set of AVI analog voltage $\mathrm{DCO}-+10 \mathrm{~V} / 0-+5 \mathrm{~V}, 2$ sets of ACI analog current $0 / 4-20 \mathrm{~mA}$, 15 Multi-Function Inputs, RS-485 interface (MODBUS), External terminals UP/DOWN Key
	Operation Setting Signal	Keypad	Set by RUN, STOP and JOG
		External Signal	Operation by FWD, REV, JOG and communication operation
	Multi-Function Input Signal		Multi-step selection 0 to 15 , Jog, accel/decel inhibit, first to forth accel/decel switches, counter, external Base Block (NC, NO), JOG, auxiliary motor start/maintenance
	Multi-Function Output Indication		AC Drive Operating, Frequency Attained, Desired Frequency Attained, Zero speed, Base Block, Fault Indication, Local/Remote indication, and Auxiliary Motor Output
	Analog Output Signal		2 sets of Analog frequency/current signal output

General Specification		
Other Functions		AVR, 2 kinds of S-Curve, Over-Voltage, Over-Current Stall Prevention, Fault Records, Reverse inhibition, DC Brake, Momentary Power Loss restart, Auto torque and slip compensation, PID Control, Parameter Lock/Reset, Frequency Limits, Adjustable Carrier Frequency, 4 sets of Fan \& Pump Control,
Protection		Self-testing, Over Voltage, Over Current, Under Voltage, Overload, Overheating, External Fault, Electronic thermal, Ground Fault, Phase-loss
Built-in Reactor		DC Reactor: 25~215HP AC Reactor: 250~300HP
Built-in Brake Chopper		1~20HP
Cooling Methods		Forced Fan-cooled
즏 n©읃릉	Installation Location	Altitude 1,000 m or lower, keep from corrosive gasses, liquid and dust
	Pollution Degree	2
	Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Non-Condensing and not frozen
	Storage/ Transportation Temperature	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
	Ambient Humidity	Below 90\% RH (non-condensing)
	Vibration	$9.80665 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})$ less than $20 \mathrm{~Hz}, 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G})$ at 20 to 50 Hz
Approvals		(Etill ${ }_{\text {us }}$

Basic Wiring Diagram

Users must connect wiring according to the following circuit diagram shown below.

NOTE : Do not plug a Modem or telephone line to the RS-485 communication port, permanent damage may result. Pins 1 \& 2 are the power sources for the optional copy keypad and should not be used while using RS485 communication.

For 230 V series, 20 hp and above models 460 V series, 25 hp and above models

Wiring for SINK mode and SOURCE mode

VFD-PU01

(1) Description of the Digital Keypad VFD-PU01

(2) Operation steps of the Digital Keypad VFD-PU01

Selecting mode
START

Setting parameters

NOTE : In the parameter setting mode, you can press mode to return the selecting mode.

To shift data
START

To modify data

Setting direction

- Frd ${ }^{-} \Rightarrow-r U_{u} \rightarrow-$-Frd
Δ or $\boldsymbol{\Delta}$ en or $\boldsymbol{\nabla}$ en

KPF-CC01

(1) Description of the Digital Keypad KPF-CC01

KPF-CC01 Operation Flow Chart

KPF-CC01 Operation Flow Chart

Power Terminals and Control Terminal

1HP to 5HP (VFD007F23A/43A, VFD015F23A/43A, VFD022F23A/43A, VFD037F23A/43A)


```
Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: }18\textrm{kgf-cm}\mathrm{ (15.6 in-lbf)
Wire Gauge: 10-18 AWG
Wire Type: Stranded copper only, 75 ' C
```

7.5 HP to 20 HP (VFD055F23A/43B, VFD075F23A/43B, VFD110F23A/43A, VFD150F43A)

Control Terminal
Torque: $4 \mathrm{Kgf-cm}$ (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: $30 \mathrm{Kgf-cm}$ (26 in-lbf)
Wire: 12-8 AWG
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$ NOTE: If wiring of the terminal utilizes the wire with a 6AWG-diameter, it is thus necessary to use the Recognized Ring Terminal to conduct a proper wiring.

Control Terminal
Torque: $4 \mathrm{Kgf-cm}$ ($3 \mathrm{in}-\mathrm{lbf}$)
Wire: 12-24 AWG
Power Terminal
Torque: 30Kgf-cm (26 in-lbf)
Wire: 8-2 AWG
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$ NOTE: If wiring of the terminal utilizes the wire with a 1AWG-diameter, it is thus necessary to use the Recognized Ring Terminal to conduct a proper wiring.

50 HP to 60 HP (VFD370F43A, VFD450F43A)

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: $57 \mathrm{kgf}-\mathrm{cm}$ (49.5 in -lbf) min.
Wire Gauge: VFD370F43A: 3AWG
VFD450F43A: 2AWG
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$

Control Terminal
Torque: $4 \mathrm{Kgf-cm}$ (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: 200kgf-cm (173 in-lbf)
Wire Gauge:
VFD300F23A, VFD550F43A: 1/0-4/0 AWG VFD370F23A, VFD750F43A: 3/0-4/0 AWG, VFD900F43C: 4/0 AWG
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$

125HP (VFD900F43A)

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: 200kgf-cm (173 in-lbf)
Wire Gauge: 4/0 AWG
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: 80kgf-cm (69 in-lbf)
Wire Gauge: 300 MCM
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$
NOTE: It needs following additional terminal when wiring, and add insulation sheath on position where following figure shows.

150 HP to 215 HP
(VFD1100F43C, VFD1320F43A, VFD1600F43A)

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG
Power Terminal
Torque: $300 \mathrm{kgf-cm}$ ($260 \mathrm{in}-\mathrm{lbf}$)
Wire Gauge: 1/0 AWG*2-300 MCM*2
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$

NOTE: It needs following additional terminal when wiring. The additional terminal dimension should comply with the following figure.

Control Terminal
Torque: 4Kgf-cm (3 in-lbf)
Wire: 12-24 AWG

Power Terminal
Torque: 408kgf-cm (354 in-lbf)
Wire Gauge: 500 MCM (max)
Wire Type: Stranded copper only, $75^{\circ} \mathrm{C}$
NOTE: It needs following additional terminal when wiring, and add insulation sheath on position where following figure shows.

Terminal Explanations

Terminal Symbol	Explanation of Terminal Function
R/L1, S/L2, T/L3	AC line input terminals
U/T1, V/T2, W/T3	AC drive output terminals motor connections
$+1,+2$	Connections for DC Link Reactor (optional)
$+2 / B 1 \sim$ B2	Connections for Brake Resistor (optional)
$+2 \sim-,+2 / B 1 \sim-$	Connections for External Brake Unit (VFDB series)
	Earth Ground

Control Terminals Explanations

Terminal Symbols	Terminal Functions	Factory Settings
FWD	Forward-Stop command	
REV	Reverse-Stop command	
EF	External fault	
MI1	Multi-function Input 1	Factory default: Multi-step speed command 1
MI2	Multi-function Input 2	Factory default: Multi-step speed command 2
MI3	Multi-function Input 3	Factory default: Multi-step speed command 3
MI4	Multi-function Input 4	Factory default: Multi-step speed command 4
MI5	Multi-function Input 5	Factory default: RESET
MI6	Multi-function Input 6	Factory default: JOG
MI7	Multi-function Input 7	Factory default: Accel/Decel prohibit
MI8	Multi-function Input 8	Factory default: Accel/Decel time switch 1
+24V	DC Voltage Source	(+24V, 20 mA), used for source mode.
DCM	Digital Signal Common	Used as common for digital inputs and used for sink mode.
RA 1	Multi-function Relay1 output (N.O.) a	
RB 1	Multi-function Relay1 output (N.C.) b	
RC 1	Multi-function Relay1 common	1.5A(N.O.)/1A(N.C.) 24VDC
RA 2	Multi-function Relay2 output (N.O.) a	Refer to Pr.03-00 to Pr.03-01
RB 2	Multi-function Relay2 output (N.C.) b	
RC 2	Multi-function Relay2 common	
+10V	Potentiometer power source	+10V 20 mA
AVI	Analog voltage Input	0 to +10 V correspond to Max. operation frequency
ACI 1/2	Analog current Input	4 to 20 mA correspond to Max. operation frequency
AFM 1	Analog frequency/current meter 1	0 to 10V correspond to Max. operation frequency
AFM 2	Analog frequency /current meter 2	4 to 20 mA correspond to 2 times of output current
ACM	Analog control signal (common)	

[^0]
SUMMARY OF PARAMETER SETTINGS

N : The parameter can be set during operation
Group 0 AC Drive Status Parameter

Parameter	Functions	Settings	Factory Setting	Customer
00-00	Software Version	Read only		
00-01	AC Drive Status Indication 1	00: No Fault occurred 01: oc (over current) 02: ov (over voltage) 03: oH (over temperature) 04: oL (overload) 05: oL1 (electronic thermal relay) 06: EF (external Fault) 07: occ (AC drive IGBT fault) 08: cF3 (CPU failure) 09: HPF (Hardware Protection Failure) 10: ocA (current exceed during Acceleration) 11: ocd (current exceed during Deceleration) 12: ocn (current exceed during Steady State) 13: GFF (Ground Fault) 14: Lv (Low voltage) 15: cF1 (input data abnormal) 16: cF2 (output data abnormal) 17: bb (Base Block) 18: oL2 (over load2) 19: Reserved 20: codE (software or password protection) 21: EF1 (external Emergency Stop) 22: PHL (phase loss) 23: Lc (Low Current) 24: Fbl (Feedback Loss) 25: Reserved 26: FAnP (Fan Power Fault) 27: FF1 (Fan 1 fault) 28: FF2 (Fan 2 fault) 29: FF3 (Fan 3 fault) 30: FF123 (Fan 1, 2, 3 fault) 31: FF12 (Fan 1, 2 fault) 32: FF13 (Fan 1, 3 fault) 33: FF23 (Fan 2, 3 fault) 34: Fv (Gate Drive Low Voltage Protect)	Read	
00-02	AC Drive Status Indication 2	Bit 0~1: 00: Run led is off and stop led is on. 01: Run led is blink and stop led is on. 10: Run led is on and stop led is blink. 11: Run led is on and stop led is off. Bit 2: 1: Jog on. Bit 3~4: 00: Rev led is off and FWD led is on. 01: Rev led is blink and FWD led is on. 10: Rev led is on and FWD led is blink. 11: Rev led is on and FWD led is off. Bit 5-7: Reserved Bit 8: Master frequency source via communication interface	Read	

Parameter	Functions	Settings	Factory Setting	Customer
		Bit 9: Master frequency source via analog Bit10: Running command via communication interface Bit11: Parameter locked Bit12~15: Reserved		
$00-03$	Frequency Setting	Read only	Read	
$00-04$	Output Frequency	Read only	Read	
$00-05$	Output Current	Read only	Read	
$00-06$	DC-BUS Voltage	Read only	Read	
$00-07$	Output Voltage	Read only	Read	
$00-08$	Output Power Factor	Read only	Read	
$00-09$	Output Power (kW)	Read only	Read	
$00-10$	Feedback Signal Actual Value	Read only	Read	
$00-11$	Feedback Signal (\%)	Read only	Read	
$00-12$	User Target Value (Low bit) uL 0-99.99	Read only	Read	
$00-13$	User Target Value (High bit) uH 0-9999	Read only	Read	
$00-14$	PLC time	Read only	Read	

Group 1 Basic Parameter (Twice the value for 460 V class)

Parameter	Functions	Settings	Factory Setting	Customer
01-00	Maximum Output Frequency	$50.00 \sim 120.00 \mathrm{~Hz}$	60.00	
01-01	Maximum Voltage Frequency (Base Frequency)	0.10~120.00 Hz	60.00	
01-02	Maximum Output Voltage	230 V series: $0.1 \sim 255.0 \mathrm{~V}$ 460 V series: $0.2 \sim 510.0 \mathrm{~V}$	$\begin{aligned} & \hline 220.0 \\ & 440.0 \\ & \hline \end{aligned}$	
01-03	Mid-point Frequency	0.10~120 Hz	1.50	
01-04	Mid-point Voltage	230 V series: $0.1 \sim 255.0 \mathrm{~V}$ 460 V series: $0.2 \sim 510.0 \mathrm{~V}$	$\begin{gathered} \hline 5.5 \\ 11.0 \\ \hline \end{gathered}$	
01-05	Minimum Output Frequency	0.10~20.00 Hz	1.50	
01-06	Minimum Output Voltage	230V series: $0.1 \sim 50.0 \mathrm{~V}$ 460V series: $0.2 \mathrm{~V} \sim 100.0 \mathrm{~V}$	$\begin{gathered} \hline 5.5 \\ 11.0 \\ \hline \end{gathered}$	
01-07	Upper Bound Frequency	0.00~120.00 Hz	60.00	
01-08	Lower Bound Frequency	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	
N 01-09	Acceleration Time 1	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N 01-10	Deceleration Time 1	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N01-11	Acceleration Time 2	0.1~3600.0 Sec	$\begin{gathered} \hline 10.0 / \\ 60.0 \end{gathered}$	
N 01-12	Deceleration Time 2	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N 01-13	Acceleration Time 3	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	

Parameter	Functions	Settings	Factory Setting	Customer
N 01-14	Deceleration Time 3	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \end{aligned}$	
N 01-15	Acceleration Time 4	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N 01-16	Deceleration Time 4	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N 01-17	JOG Acceleration Time	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \end{aligned}$	
N 01-18	JOG Deceleration Time	0.1~3600.0 Sec	$\begin{aligned} & \hline 10.0 / \\ & 60.0 \\ & \hline \end{aligned}$	
N 01-19	JOG frequency	$0.0 \mathrm{~Hz} \sim 120.00 \mathrm{~Hz}$	6.00	
01-20	S Curve Delay Time in Accel	0.00~2.50sec	0.00	
01-21	S Curve Delay Time in Decel	0.00~2.50sec	0.00	
N01-22	Modulation Index	0.90~1.20	1.00	
01-23	Accel/Decel Time Unit	00 : Unit is 1 Sec 01: Unit is 0.1 Sec 02: Unit is 0.01 Sec	01	

Group 2 Digital Output/Input Parameter

Parameter	Functions	Settings	$\begin{aligned} & \text { Factory } \\ & \text { Setting } \end{aligned}$	Customer
N02-00	Source of Frequency Command	00: via keypad 01: via analog input AVI 02: via analog input ACI1 03: via analog input ACI2 04: via RS485 serial communication 05: via External Reference	00	
N02-01	Source of Operation Command	00: Controlled by the digital keypad 01: Controlled by the external terminals, keypad STOP enabled. 02: Controlled by external terminals, keypad STOP disabled. 03: Controlled by the RS-485 communication interface, keypad STOP enabled. 04: Controlled by the RS-485 communication interface, keypad STOP disabled.	00	
02-02	Stop Method	```00:Stop = ramp to stop, E.F. (External Fault) = coast to stop 01:Stop = coast to stop, E.F. = coast to stop 02:Stop = ramp to stop, E.F. = ramp to stop 03:Stop = coast to stop, E.F. = ramp to stop```	00	
N 02-03	PWM Carrier Frequency Selections	$\begin{aligned} & 1 \sim 10 \mathrm{HP}: 4000 \sim 10000 \mathrm{~Hz} \\ & 15 \sim 30 \mathrm{HP}: 3000 \sim 9000 \mathrm{~Hz} \\ & \geqq 40 \mathrm{HP}: 2000 \sim 6000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \hline 9000 \mathrm{~Hz} \\ & 6000 \mathrm{~Hz} \\ & 4000 \mathrm{~Hz} \end{aligned}$	

Parameter	Functions	Settings	Factory Setting	Customer
02-04	Forward/Reverse Enable	00: Forward enabled 01: Reverse disabled 02: Forward disabled	00	
02-05	2-wire/3-wire Operation Control Modes	00: 2-wire (\#1), FWD/STOP, REV/STOP 01: 2-wire (\#2), RUN/STOP, REV/FWD 02: 3-wire	00	
02-06	Line Start Lockout	00: Disabled 01: Enabled	01	
02-07	Loss of ACI Signal	00: Decelerate to OHz 01: E.F. 02: Continue operation by the last frequency command	01	
N02-08	Start-up Display Selection	$\begin{aligned} & \hline \text { Bit0~1: } 00=\text { F LED } \\ & 01=\text { H LED } \\ & 10=U \text { LED (special display) } \\ & 11=\text { Fwd } / \text { Rev } \\ & \text { Bit2: } 0=\text { Fwd LED } / 1=\text { Rev LED } \\ & \text { Bit3~5: } 000=1 \text { st } 7 \text {-step } \\ & 001=2 \text { nd 7-step } \\ & 010=\text { 3rd 7-step } \\ & 011=4 \text { th } 7 \text {-step } \\ & 100=5 \text { th 7-step } \\ & \text { Bit6~7: Reserved } \end{aligned}$	00	
N02-09	Special Display	00: A displays output current of AC drive 01: U displays DC-Bus voltage of AC drive 02: E displays RMS of output voltage 03: P displays feedback Signal 04: PLC display auto procedure state	00	
N 02-10	User Defined Coefficient	0.01~160.00	1.00	
N02-11	Flying Start	00: Disable 01: Enable (Dc brake disabled)	00	
N 02-12	Flying Start Frequency	```00: Trace from master frequency command 01: Trace from maximum setting frequency 01-00```	00	
N02-13	Master Frequency Memory Setting	00: Do not remember the last known frequency 01: Remember the last known frequency	01	

Group 3 Output Function Parameters

Parameter	Functions	Settings	Factory Setting	Customer
$03-00$	Multi-function Output terminal 1	00: No function 01: Motor No.1 02: Motor No.2 03: Motor No.3 04: Motor No.4 05: Motor No.5 06: Motor No.6 07: Motor No.7 08: Motor No.8 09: Auxiliary 1 output	00	
$03-01$	Multi-function Output terminal 2	00		
$03-02$	Multi-function Output terminal 3	00		
$03-03$	Multi-function Output terminal 4	00		
$03-04$	Multi-function Output terminal 5	00		

Parameter	Functions	Settings	Factory Setting	Customer
03-05	Multi-function Output terminal 6	10: Auxiliary 2 output 11: Auxiliary 3 output 12: Auxiliary 4 output 13: Auxiliary 5 output 14: Auxiliary 6 output 15: Auxiliary 7 output 16: Indication during operation 17: Master frequency attained 18: Zero Speed (including shutdown) 19: Over-torque 20: External Fault 21: Low voltage detection 22: Operation Mode indication 23: Fault indication 24: Master Frequency Attained 1 25: Master Frequency Attained 2 26: Over Temperature indication 27: Drive Ready 28: External Emergency Stop (EF1) 29: Software Brake Output 30: OL or OL1 Overload Warning 31: Dwell Indication (sleep) 32: Low Current Indication 33: PID Feedback Error Indication 34: PLC Program Running 35: PLC Program Step Completed 36: PLC Program Completed 37: PLC Program Operation Paused	00	
03-06	Multi-function Output terminal 7		00	
03-07	Multi-function Output terminal 8		00	
03-08	Master Frequency Attained 1	0.00~120.00 Hz	0.00	
03-09	Master Frequency Attained 2	0.00~120.00 Hz	0.00	
03-10	$\begin{array}{\|l} \hline \text { Analog Output 1, } \\ \text { (AFM1) 0~10Vdc } \end{array}$	00: Output frequency01: Output current02: Output voltage03: Frequency command04: Power factor loading	00	
03-11	$\begin{aligned} & \hline \text { Analog Output 2, } \\ & \text { (AFM2) } 0 / 4 \sim 20 \mathrm{~mA} \end{aligned}$		01	
N 03-12	Analog Output Gain 1	01~200\%	100	
N 03-13	Analog Output Gain 2	01~200\%	100	
03-14	Analog Output 2 Selection (AFM2 Definition)	$\begin{aligned} & \text { 00: } 0 \sim 20 \mathrm{~mA} \\ & 01: 4 \sim 20 \mathrm{~mA} \end{aligned}$	01	
03-15	DC Fan Control	00: Fan runs on power up. 01: Fan begins upon a RUN command. Fan stops 1 minute after a STOP command. 02: Fan begins upon a RUN command. Fan stops after a STOP command 03: Fan is controlled by temperature. Approximately a $60^{\circ} \mathrm{C}$ temperature will start the fan.	00	

Group 4 Input Function Parameters

\left.| Parameter | Functions | Settings |
| :---: | :--- | :--- | :---: | :---: |$\right)$| Factory |
| :---: |
| Setting | Customer

Parameter	Functions	Settings	Factory Setting	Customer
04-19	ACI2 Minimum frequency (percentage of Pr.1-00)	0.00~100.00\%	0.00	
04-20	ACl2 Maximum frequency (percentage of Pr.1-00)	0.00~100.00\%	100.00	
04-21	Analog Input Delay AVI	0.00~10.00 Sec	0.50	
04-22	Analog Input Delay ACI1	0.00~10.00 Sec	0.50	
04-23	Analog Input Delay ACI2	0.00~10.00 Sec	0.50	
04-24	Summation of External Frequency Sources	00: No functions 01: AVI+ACl1 02: $\mathrm{ACl} 1+\mathrm{ACl} 2$ 03: ACl2+AVI 04:Communication master frequency +AVI 05:Communication master frequency +ACI1 06:Communication master frequency +ACI2	00	

Group 5 Multi-step Speed Frequency Parameters

Parameter	Functions	Settings	Factory Setting	Customer
N05-00	$1^{\text {st }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-01	$\begin{array}{\|l} \hline 2^{\text {nd }} \text { Step Speed } \\ \text { Frequency } \\ \hline \end{array}$	0.00~120.00 Hz	0.00	
N05-02	$3^{\text {rd }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-03	$4^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-04	$5^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-05	$6^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-06	$7^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-07	$8^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-08	$9^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N 05-09	$10^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-10	$11^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-11	$12^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N05-12	$13^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	
N 05-13	$14^{\text {th }}$ Step Speed Frequency	0.00~120.00 Hz	0.00	

Parameter	Functions	Settings	$\begin{array}{l}\text { Factory } \\ \text { Setting }\end{array}$	Customer
$N 05-14$	$\begin{array}{l}15^{\text {th }} \text { Step Speed } \\ \text { Frequency }\end{array}$	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	
$05-15$	PLC Mode	$\begin{array}{l}\text { 00: Disable PLC Operation } \\ \text { 01: Execute one program cycle } \\ \text { 02: Continuously execute program cycles } \\ \text { 03: Execute one program cycle step by } \\ \text { step }\end{array}$	00	
04: Continuously execute program cycles				
step by step				

Group 6 Protection Function Parameters (Twice the value for 460 V class)

Parameter	Functions	Settings	Factory Setting	Customer
$06-00$	Over-voltage Stall Prevention	230V: 330.0~410.0VDC 460 V: $660.0 \sim 820.0 V D C$ 00: Disable	390.0 780.0	
$06-01$	Over-current Stall Prevention during Acceleration	20~150\% 00: Disable	120	
$06-02$	Over-current Stall Prevention during operation	20~150\% 00: Disable	120	

Parameter	Functions	Settings	Factory Setting	Customer
06-03	Over-torque Detection Selection	00: Over-torque detection disabled. 01: Over-torque detection enabled during constant speed operation (OL2), and operation continues. 02: Over-torque detection enabled during constant speed operation (OL2), and operation halted. 03: Over-torque detection enabled during operation (OL2), and operation continues. 04: Over-torque detection enabled during operation (OL2), and operation halted.	00	
06-04	Over-torque Detection Level	30~150\%	110	
06-05	Over-torque Detection Time	0.1~60.0 Sec	0.1	
06-06	Electronic Thermal Relay Selection	00: Operate disabled. 01: Operate with a standard motor. 02: Operate with a special motor.	02	
06-07	Electronic Thermal Characteristic	30~600 Sec	60	
06-08	Low Current Detection Level	00~100\% (00 disabled)	00	
06-09	Low Current Detection Time	0.1~3600.0 Sec	10.0	
06-10	Low Current Detection Treatment	00: Warn and Ramp to stop 01: Warn and Coast to stop 02: Warn and keep operating	01	
06-11	Present Fault Record	00: No Fault	00	
06-12	Second Most Recent Fault Record	01: Oc (over-current) 02: Ov (over-voltage)	00	
06-13	Third Most Recent Fault Record	03: OH (over temperature) 04: OL (over load)	00	
06-14	Fourth Recent Fault Record	05: oL1 (over load 1) 06: EF (external fault) 07: Occ (IGBT module is abnormal) 08: cF3 (driver's internal circuitry abnormal) 09: HPF (hardware protection failure) 10: OcA (over-current during acceleration) 11: Ocd (over-current during deceleration) 12: Ocn (over-current during steady state operation) 13: GFF (Ground Fault) 14: Lv (Low voltage) 15: cF1 (EEPROM WRITE failure) 16: cF2 (EEPROM READ failure) 17: bb (Base block) 18: OL2 (over load2) 19: Reserved 20: Code (software/password protection) 21: EF1 (Emergency stop) 22: PHL (phase-loss)	00	

Parameter	Functions	Settings	Factory Setting	Customer
		23: Lc (Low Current) 24: Fbl (Feedback Loss) 25: Reserved 26: FAnP (Fan Power Fault) 27: FF1 (Fan 1 fault) 28: FF2 (Fan 2 fault) 29: FF3 (Fan 3 fault) 30: FF123 (Fan 1, 2, 3 fault) 31: FF12 (Fan 1, 2 fault) 32: FF13 (Fan 1, 3 fault) 33: FF23 (Fan 2, 3 fault) 34: Fv (Gate Drive Low Voltage Protect)		
$06-15$	Parameter Reset	00~65535 09: Reset parameters (50Hz, 220/380) 10: Reset parameters (60Hz, 220/440)	00	
$06-16$	Parameter Protection Password Input	00~65535		
$06-17$	Parameter Protection Password Setting	00~65535 00: No password protection	00	

Group 7 AC Drive and Motor Parameters

Parameter	Functions	Settings	Factory Setting	Customer
$07-00$	ldentity Code of AC Drive	Display by model type	$\# \#$	
$07-01$	Rated Current of AC Drive	Display by model type	$\# \#$	
N07-02	lull-load Current of Motor	$30 \sim 120 \%$	300%	
N07-03	No-load Current of Motor	$1 \sim 99 \%$	0.0	
N07-04	Auto Slip Compensation Gain	$0.0 \sim 3.0$	0.00	
$07-05$	Rated Slip Frequency of Motor	$0.00 \sim 20.00 \mathrm{~Hz}$	0.0	
N07-06	Auto Torque Compensation Gain	$0.0 \sim 10.0$	00	
N07-07	Torque Compensation Gain by Manually	$0.0 \sim 10.0$	00	
$07-08$	Calculate Total Running Time of the Motor (Min)	00 to 1439 Min	(Dalculate Total Running Time of the Motor (Day)	00 to 65535 Day
$07-09$	Cal			

Group 8 Special Parameters (Twice the value for 460 V class)

Parameter	Functions	Settings	Factory Setting	Customer
$08-00$	DC Brake Current Level	$00 \sim 100 \%$	00	
$08-01$	DC Brake Time during Start-up	$0.0 \sim 60.0$ Sec	0.0	

Parameter	Functions	Settings	Factory Setting	Customer
08-02	DC Brake Time during Stopping	0.00~60.00 Sec	0.0	
08-03	Start-point for DC Brake	0.00~120.00 Hz	0.00	
08-04	Momentary Power Loss Operation Selection	00: Disable 01: Trace from top downward 02: Trace from bottom upward	00	
08-05	Maximum Allowable Power Loss Time	0.1~5.0 Sec	2.0	
08-06	Speed Search Time	0.1~5.0 Sec	0.5	
08-07	Maximum Speed Search Current	30~150\%	110	
08-08	BB speed search method	00: Trace from top downward 01: Trace from bottom upward	00	
08-09	Auto Restart Times after Fault	00~10	00	
08-10	Auto Restart Time after Fault	00 to 60000 sec	600	
08-11	Operation Frequency Inhibition 1 UP	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	
08-12	Operation Frequency Inhibition 1 DOWN	0.00~120.00 Hz	0.00	
08-13	Operation Frequency Inhibition 2 UP	0.00~120.00 Hz	0.00	
08-14	Operation Frequency Inhibition 2 DOWN	0.00~120.00 Hz	0.00	
08-15	Operation Frequency Inhibition 3 UP	0.00~120.00 Hz	0.00	
08-16	Operation Frequency Inhibition 3 DOWN	0.00~120.00 Hz	0.00	
08-17	Automatic Energysaving	00: Energy-saving operation disabled 01: Energy-saving operation enabled	00	
08-18	Automatic Voltage Regulation (AVR)	00: AVR function enabled 01: AVR function disabled 02: AVR function disabled for deceleration	00	
N 08-19	Software Setting of the Brake Level (the action level of the brake resistor)	$\begin{aligned} & \text { 230V: 370~410VDC } \\ & \text { 460V: 740~820VDC } \\ & \text { 00:Disable } \end{aligned}$	$\begin{aligned} & \hline 380.0 \\ & 760.0 \end{aligned}$	
N08-20	Vibration Compensation Factor	00~1000	00	

Group 9 Communication Parameters

Parameter	Functions	Settings	Factory Setting	Customer
N09-00	Communication Address	01-254 00: Disable	01	
N09-01	Transmission Speed (Baud Rate)	00: Baud rate 4800 01: Baud rate 9600 02: Baud rate 19200 03: Baud rate 38400	01	

Parameter	Functions	Settings	Factory Setting	Customer
N09-02	Transmission Fault Treatment	00: Warn and keep operating 01: Warn and RAMP to stop 02: Warn and COAST to stop 03: No warning and no display	03	
09-03	Over Time Detection during Transmission	00: Disable	00	
09-04	Communication Format	$\begin{aligned} & \text { 00: 7-bit for ASCII } \\ & \text { 01: 8-bit for ASCII } \\ & \text { 02: 8-bit for RTU } \end{aligned}$	00	
09-05	Even/Odd Parity and Stopping Parity Setting	$\begin{aligned} & \text { 00: None parity }+2 \text { stop bit } \\ & \text { 01: Even parity }+2 \text { stop bit } \\ & \text { 02: Odd parity }+2 \text { stop bit } \\ & \text { 03: None parity }+1 \text { stop bit } \\ & \text { 04: Even parity }+1 \text { stop bit } \\ & \text { 05: Odd parity }+1 \text { stop bit } \end{aligned}$	00	
N09-06	Communication Operation Command 1		00	
N09-07	Communication Frequency Setting	0~120.00Hz	60.00	
N09-08	Communication Operation Command 2	Bit0: 1: EF ON Bit1: 1: Reset Bit2: 0: BB OFF, 1: BB ON Bit3~15: Reserved	00	

Group 10 PID Controls

Parameter	Functions	Settings	Factory Setting	Customer
10-00	Input Terminal for PID Feedback	00: No function 01: Input via AVI 02: Input via ACI1 03: Input via ACI2 04: Input via External Reference	00	
10-01	PID Control Detection Signal Reference	0.0-6550.0	1000.0	
10-02	PID Feedback Control Method	00: Negative feedback control 01: Positive feedback control	00	
10-03	Proportional Gain (P)	0.0~10.0	1.0	
10-04	Integral Time (I)	0.00~100.00 Sec	1.00	
10-05	Differential Time (D)	0.00~1.00 Sec	0.00	
10-06	Upper Bound for Integral Control	00~200\%	100	
10-07	Primary Low Pass Filter Time	0.0~2.5 Sec	0.0	
10-08	PID Feedback Signal Range	0.0~6550.0	600.0	
10-09	PID Feedback Signal Fault Treatment Time	$\begin{aligned} & \text { 0. 0~3600.0 Sec } \\ & \text { 0.0: Disable } \end{aligned}$	0.0	
N 10-10	PID Feedback Signal Fault Treatment	00: Warn and RAMP stop 01: Warn and COAST stop 02: Warn and keep operating	01	
N 10-11	PID Minimum Output Frequency	0: By PID controller 1: By AC drive	01	

Group 11 Fan and Pump Control Parameters

Parameter	Functions	Settings	Factory Setting	Customer
$11-00$	V/f Curve Selection	00: Determined by group 01 01: 1.5 power curve 02: 1.7 power curve 03: 2 power curve 04: 3 power curve	00	
$11-01$	Circulative Control	00: No function 01: Time circulation (by time) 02: Fixed amount circulation (by PID) 03: Fixed amount control (an AC drive runs with 4 motors)	00	
$11-02$	Multiple Motors Control	01~04	01	
$11-03$	Time Circulation Time Setting	$00 \sim 65500$ Min	00	
$11-04$	Motor Switch Delay Time	$0.0 \sim 3600.0$ sec	10.0	
$11-05$	Motor Switch Delay Time during Fixed Amount Circulation	$0.0 \sim 3600.0$ sec	01	

Parameter	Functions	Settings	Factory Setting	Customer
$11-06$	Motor Switch Frequency during Fixed Amount Circulation	0.00 to 120.00 Hz	60.00	
$11-07$	Enter Sleep Process Time	$0.0 \sim 3600.0 \mathrm{sec}$ $0.0: ~ S l e e p ~ f u n c t i o n ~ d i s a b l e ~$	0.0	
$11-08$	Sleep Frequency of Sleep Process	0.00 to 11-09 (Wake up Frequency)	0.0	
$11-09$	Wake Up Frequency of Sleep Process	0.00 to 120.0Hz	0.0	
$11-10$	Treatment of Fixed Amount Circulation Malfunction	$00:$ Turn off all motors $01:$ Turn off AC drive	00	
$11-11$	Stop Frequency of Auxiliary Motor	$0.00 \sim 120.00 \mathrm{~Hz}$	0.00	

Fault Codes

Fault Name	Fault Descriptions	Corrective Actions
codE	Software protection failure	Return to the factory.
HPF. :	GFF hardware error	Return to the factory.
HPF.E	CC (Current Clamp)	Return to the factory.
HPF.5	OC hardware error	Return to the factory.
HPF.4	OV hardware error	Return to the factory.
HPF.5	OH hardware error	Return to the factory.
oc	Over current Abnormal increase in current.	1. Check whether the motors horsepower corresponds to the AC drive output power.
2. Check the wiring connections between the AC drive and		
motor for possible short circuits.		

Fault Name	Fault Descriptions	Corrective Actions
OH	Overheating Heat sink temperature too high	1. Ensure that the ambient temperature falls within the specified temperature range. 2. Make sure that the ventilation holes are not obstructed. 3. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. 4. Check the fan and clean it. 5. Provide enough spacing for adequate ventilation.
Lu	Low voltage The AC motor drive detects that the DC bus voltage has fallen below its minimum value.	1. Check whether the input voltage falls within the AC motor drive rated input voltage range. 2. Check whether the motor has sudden load. 3. Check for correct wiring of input power to R-S-T (for 3-phase models) without phase loss.
ol	Overload The AC motor drive detects excessive drive output current.	1. Check whether the motor is overloaded. 2. Reduce torque compensation setting in Pr.7-02. 3. Take the next higher power AC motor drive model. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of $\mathbf{6 0}$ seconds.
ot :	Overload 1 Internal electronic overload trip	1. Check for possible motor overload. 2. Check electronic thermal overload setting. 3. Use a higher power motor. 4. Reduce the current level so that the drive output current does not exceed the value set by the Motor Rated Current Pr.7-00.
ote	Overload 2 Motor overload.	1. Reduce the motor load. 2. Adjust the over-torque detection setting to an appropriate setting. (Pr. 06-03 to Pr. 06-05)
εF	External Fault	1. Input EF (N.O.) on external terminal is closed to GND. Output $\mathrm{U}, \mathrm{V}, \mathrm{W}$ will be turned off. 2. Give RESET command after fault has been cleared.
cE--	Communication error	1. Check the connection between the AC drive and computer for loose wires. 2. Check if the communication protocol is properly set.
oc8	Over-current during acceleration	1. Short-circuit at motor output: Check for possible poor insulation at the output lines. 2. Torque boost too high: Decrease the torque compensation setting in Pr.7-02. 3. Acceleration Time too short: Increase the Acceleration Time. 4. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
ocd	Over-current during deceleration	1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Deceleration Time too short: Increase the Deceleration Time. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.

Fault Name	Fault Descriptions	Corrective Actions
ocn	Over-current during steady state operation	1. Short-circuit at motor output: Check for possible poor insulation at the output line. 2. Sudden increase in motor loading: Check for possible motor stall. 3. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
$\varepsilon F ;$	Emergency stop	1. When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop. 2. Press RESET after fault has been cleared.
c^{F};	Internal EEPROM can not be programmed.	1. Turn off the power. 2. Check whether the input voltage falls within the rated $A C$ drive input voltage. 3. Turn on the power.
${ }_{c} F 2$	Internal EEPROM can not be read.	1. Check the connections between the main control board and the power board 2. Reset the drive to the factory settings.
cF 3.3	U-phase error	Return to the factory.
${ }_{c} 93.4$	V-phase error	Return to the factory.
${ }_{c} F 3.5$	W-phase error	Return to the factory.
cF 36	OV or LV	Return to the factory.
cF3.7	Isum error	Return to the factory.
c 53.8	OH error	Return to the factory.
66	External Base Block.	1. When the external input terminal (B.B) is active, the AC motor drive output will be turned off. 2. Deactivate the external input terminal (B.B) to operate the AC motor drive again.
${ }_{c} F R$	Auto accel/decel failure	1. Check if the motor is suitable for operation by AC motor drive. 2. Check if the regenerative energy is too large. 3. Load may have changed suddenly.
CuF	Ground fault	When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of $A C$ motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user. 1. Check whether the IGBT power module is damaged. 2. Check for possible poor insulation at the output line.
Rnter puerr	Analog feedback error or ACI open circuit	1. Check parameter settings and wiring of Analog feedback (Pr.10-00). 2. Check for possible fault between system response time and the feedback signal detection time (Pr.10-08).
FRnP	Fan Power Fault (150~300HP)	Return to the factory.
FF :	$\begin{aligned} & \text { Fan } 1 \text { fault } \\ & \text { (150~300HP) } \end{aligned}$	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.

Fault Name	Fault Descriptions	Corrective Actions
FFS	$\begin{aligned} & \text { Fan } 2 \text { fault } \\ & \text { (150~300HP) } \end{aligned}$	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
FF3	Fan 3 fault (150~300HP)	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
FF :23	Fan 1, 2, 3 fault (150~300HP)	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
$F F: 2$	Fan 1, 2 fault (150~300HP)	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
FF:3	Fan 1, 3 fault (150~300HP)	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
ff23	Fan 2, 3 fault (150~300HP)	Remove any foreign objects on the heatsinks and check for possible dirty heat sink fins.
F	Gate drive low voltage protect	Return to the factory.

Dimensions are in mm [inch]

Model Name	A	B	C	D	E	F
007F23A/43A, 015F23A/43A,	150.0	260.0	160.2	135.0	244.3	6.5
022F23A/43A, 037F23A/43A	$[5.91]$	$[10.24]$	$[6.31]$	$[5.32]$	$[9.63]$	$[0.26]$
055F23A/43B, 075F23A/43B,	200.0	323.0	183.2	185.6	303.0	7.0
110F23A/43A, 150F43A	$[7.88]$	$[12.72]$	$[7.22]$	$[7.31]$	$[11.93]$	$[0.28]$
150F23A, 185F23A/43A,	250.0	403.8	205.4	226.0	384.0	10.0
220F23A/43A, 300F43A	$[9.84]$	$[15.90]$	$[8.08]$	$[8.90]$	$[15.12]$	$[0.39]$

Model Name	A	B	C	D	E	F
370F43A, 450F43A, 550F43A	370.0 $[14.57]$	589.0 $[23.19]$	260.0 $[10.24]$	335.0 $[13.19]$	560.0 $[22.05]$	13.0 $[0.51]$
300F23A, 370F23A, 750F43A,	370.0 900F43C	595.0 $[23.43]$	260.0 $[10.24]$	335.0 $[13.19]$	560.0 $[22.05]$	13.0 $[0.51]$

Model Name	A	B	C	D	E	F	G
900F43A,	425.0	850.0	264.0	385.0	631.0	13.0	280.0
1100F43A	$[16.73]$	$[33.46]$	$[10.39]$	$[15.16]$	$[24.84]$	$[0.51]$	$[11.02]$

Model Name	A	B	C	D	E	F	G
1100F43C,	425.0	850.0	264.0	381.0	819.5	6.5	764.0
1320F43A,	$[16.73]$	$[33.46]$	$[10.39]$	$[15.00]$	$[32.26]$	$[0.26]$	$[30.08]$

CONDUIT-BOX(OPTION)

Model Name	A	B	C	D	E	F	G	H
1850F43A,	547.0	1150.0	360.0	480.0	1119.0	6.5	1072.6	1357.6
2200F43A	$[21.54]$	$[45.28]$	$[14.17]$	$[18.90]$	$[44.06]$	$[0.26]$	$[42.23]$	$[53.45]$

[^0]: * Control signal wiring size: 18 AWG $\left(0.75 \mathrm{~mm}^{2}\right)$.

